مشخصات پژوهش

صفحه نخست /Extreme Points of the Unit ...
عنوان Extreme Points of the Unit Ball in the Dual Space of Some Real Subspaces of Banach Spaces of Lipschitz Functions
نوع پژوهش مقاله چاپ‌شده
کلیدواژه‌ها ثبت نشده‌است!
چکیده Let 𝑋 be a compact Hausdorff space, 𝜏 be a continuous involution on 𝑋 and 𝐶 ( 𝑋 , 𝜏 ) denote the uniformly closed real subalgebra of 𝐶 ( 𝑋 ) consisting of all 𝑓 ∈ 𝐶 ( 𝑋 ) for which 𝑓 ∘ 𝜏 = 𝑓 . Let ( 𝑋 , 𝑑 ) be a compact metric space and let L i p ( 𝑋 , 𝑑 𝛼 ) denote the complex Banach space of complex-valued Lipschitz functions of order 𝛼 on ( 𝑋 , 𝑑 ) under the norm ‖ 𝑓 ‖ 𝑋 , 𝑝 𝛼 = m a x { ‖ 𝑓 ‖ 𝑋 , 𝑝 𝛼 ( 𝑓 ) } , where 𝛼 ∈ ( 0 , 1 ] . For 𝛼 ∈ ( 0 , 1 ) , the closed subalgebra of L i p ( 𝑋 , 𝛼 ) consisting of all 𝑓 ∈ L i p ( 𝑋 , 𝑑 𝛼 ) for which | 𝑓 ( 𝑥 ) − 𝑓 ( 𝑦 ) | / 𝑑 𝛼 ( 𝑥 , 𝑦 ) → 0 as 𝑑 ( 𝑥 , 𝑦 ) → 0 , denotes by l i p ( 𝑋 , 𝑑 𝛼 ) . Let 𝜏 be a Lipschitz involution on ( 𝑋 , 𝑑 ) and define L i p ( 𝑋 , 𝜏 , 𝑑 𝛼 ) = L i p ( 𝑋 , 𝑑 𝛼 ) ∩ 𝐶 ( 𝑋 , 𝜏 ) for 𝛼 ∈ ( 0 , 1 ] and l i p ( 𝑋 , 𝜏 , 𝑑 𝛼 ) = l i p ( 𝑋 , 𝑑 𝛼 ) ∩ 𝐶 ( 𝑋 , 𝜏 ) for 𝛼 ∈ ( 0 , 1 ) . In this paper, we give a characterization of extreme points of 𝐵 𝐴 ∗ , where 𝐴 is a real linear subspace of L i p ( 𝑋 , 𝑑 𝛼 ) or l i p ( 𝑋 , 𝑑 𝛼 ) which contains 1, in particular, L i p ( 𝑋 , 𝜏 , 𝑑 𝛼 ) or l i p ( 𝑋 , 𝜏 , 𝑑 𝛼 ) .
پژوهشگران حدیث پازنده (نفر دوم)، داود علیمحمدی (نفر اول)