چکیده
|
Herein, a new antioxidant-photosensitizing hydrogel based on chitosan has been developed to control photodynamic therapy (PDT) activity in cancer treatment. In PDT, photosensitizers generate reactive oxygen species (ROS) during photochemical reactions, leading oxidative damage to cancer cells. However, high ROS levels are lethal to non-target healthy cells and tissues such as endothelial cells and blood cells. To mediate these drawbacks, we improved PDT with a natural polyphenolic antioxidant, Tannic acid (TA), to control the ROS level and minimize side effects through singlet oxygen (1O2) scavenging. In this work, chitosan-based hydrogels were designed using tannic acid as an antioxidant cross-linker and loaded with water-soluble N, N′ -di-(L-alanine)- 3,4,9,10-perylene tetracarboxylic diimide (PDI-Ala) as a photosensitizer. Our results showed that the hydrogel formed a three-dimensional (3D) microstructure with good mechanical strength and significant singlet oxygen production and antioxidant activity. In addition, the behavior of human melanoma cell line A375 and dental pulp stem cells (as normal cells) was compared and studied during an in vitro photodynamic treatment. Normal cells had a higher viability than cancer cells, indicating that the PDT is more effective on cancer cells than on normal cells. The new hydrogels could be applied as an effective new drug to control PDT performance.
|