مشخصات پژوهش

صفحه نخست /Synthesis and ...
عنوان Synthesis and characterization of novel nano magnetic catalysts based on 2, 6-diaminopyridine and their application in organic synthesis
نوع پژوهش پایان نامه های تقاضا محور و غیر تقاضا محور
کلیدواژه‌ها Pd and Ni magnetic nanocatalysts; Sonogashira reaction; Suzuki reaction, 3‐(Triethoxysilyl) propylisocyanate (TESPIC), 2.6 – bis(propyl-triethoxysilylureylene) pyridine (BPS)
چکیده In this project, two palladium (Pd) and nickel (Ni) novel magnetic nanocatalysts with urea-pyridine bridge [Fe3O4 @/Urea-Pyridine/Pd] and [Fe3O4 @/Urea-Pyridine/Ni] were synthesized and characterized. In order to synthesize those catalysts, firstly, 2, 6-diamino pyridine and 3‐ (triethoxysilyl) propylisocyanate (TESPIC) were used to prepare the 2, 6-bis (propyl-triethoxysilylureylene) pyridine (BPS) ligand. Then, by using this ligand and two palladium and nickel chloride salts, ligand/Pd (BPS/Pd) and ligand/Ni (BPS/Ni) were synthesized, respectively. Finally, by using Fe3O4 nanoparticles, magnetic nanocatalysts were prepared and analyzed through different analytical techniques, including FT-IR, NMR, XRD, VSM, TGA, DTA, ICP, FESEM, EDX, and BET. The palladium nanomagnetic catalyst were used for the Suzuki coupling reactions, Sonogashira coupling reactions and amination of phenylboronic acid with various amines. Also, nickel nanomagnetic catalyst was used for S-arylation of various aryl-halide and aryl thiols. The C-C, C-N and C-S bond formation have been wiedly used as a powerful tool for synthesize of biological and pharmaceutical products. By using these catalysts different nitrogen and sulfur containing products can be prepared in various industries such as pharmaceuticals or medicine. Also, the advantage of these catalysts is that they have a ligand that is well bonded to the palladium and nickel metals due to its structure and on the other hand has two free ends that gives these catalyst a polymer structure. It should be noted that [Fe3O4 @/Urea-Pyridine/Pd] and [Fe3O4 @/Urea-Pyridine/Ni] magnetic nanocatalysts exhibited high structural and excellent recycleability.
پژوهشگران فرشته حیدری (دانشجو)، محمد علی زلفی گل (استاد مشاور)، اکبر مبینی خالدی (استاد راهنما)