عنوان
|
Weak Amenability of Second Dual of Real Banach Algebras-
|
نوع پژوهش
|
مقاله چاپشده
|
کلیدواژهها
|
Banach algebra, Banach module, Complexification, Derivation, $(-1)$-Weak amenability.d
|
چکیده
|
Let $ (A,\| \cdot \|) $ be a real Banach algebra, a complex algebra $ A_\mathbb{C} $ be a complexification of $ A $ and $ \| | \cdot \| | $ be an algebra norm on $ A_\mathbb{C} $ satisfying a simple condition together with the norm $ \| \cdot \| $ on $ A$. In this paper we first show that $ A^* $ is a real Banach $ A^{**}$-module if and only if $ (A_\mathbb{C})^* $ is a complex Banach $ (A_\mathbb{C})^{**}$-module. Next we prove that $ A^{**} $ is $ (-1)$-weakly amenable if and only if $ (A_\mathbb{C})^{**} $ is $ (-1)$-weakly amenable. Finally, we give some examples of real Banach algebras which their second duals of some them are and of others are not $ (-1)$-weakly amenable.d
|
پژوهشگران
|
حمید رضا علی حسینی (نفر اول)، داود علیمحمدی (نفر دوم)
|