عنوان
|
Weakly compact composition operators on real Lipschitz spaces of complex-valued functions on compact metric spaces with Lipschitz involutions
|
نوع پژوهش
|
مقاله چاپشده
|
کلیدواژهها
|
Compact operator, Composition operator, Lipschitz involution, Weakly compact operator
|
چکیده
|
We first show that a bounded linear operator $T$ on a real Banach space $E$ is weakly compact if and only if the complex linear operator $T'$ on the complex Banach space $E_{\mathbb{C}}$ is weakly compact, where $E_{\mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{\mathbb{C}}$ associated with $T$. Next we show that every weakly compact composition operator on real Lipschitz spaces of complex-valued functions on compact metric spaces with Lipschitz involutions is compact.X
|
پژوهشگران
|
حمید رضا علی حسینی (نفر دوم)، داود علیمحمدی (نفر اول)
|