In this present study, the adsorption behavior of HO2 radical on the exterior surface of (5, 0) zigzag boron nitride nanotube (BNNT) has been investigated. The electronic structures and geometries of studied complexes were calculated at B3LYP-D3/6-31++G (d, p) computational level. The value of adsorption energy for the most stable configuration (A) is obtained −0.68 eV, indicating physisorption process. Meaningful change of HOMO–LUMO gap after adsorption confirming BNNT can be introduced as a promising sensor for sensing of HO2 radical.