Hanwoo, an important indigenous and popular breed of beef cattle in Korea, shows rapid growth and has high meat quality. Its yearling weight (YW) and carcass traits (backfat thickness, carcass weight- CW, eye muscle area, and marbling score) are economically important for selection of young and proven bulls. However, measuring carcass traits is difficult and expensive, and can only be performed postmortem. Genomic selection has become an appealing procedure for genetic evaluation of these traits (by inclusion of the genomic data) along with the possibility of multi-trait analysis. The aim of this study was to compare conventional best linear unbiased prediction (BLUP) and single-step genomic BLUP (ssGBLUP) methods, using both single-trait (ST-BLUP, ST-ssGBLUP) and multi-trait (MT-BLUP, MT-ssGBLUP) models to investigate the improvement of breeding-value accuracy for carcass traits and YW. The data comprised of 15,279 phenotypic records for YW and 5,824 records for carcass traits, and 1,541 genotyped animals for 34,479 single-nucleotide polymorphisms. Accuracy for each trait and model was estimated only for genotyped animals by five-fold cross-validation. ssGBLUP models (ST-ssGBLUP and MT-ssGBLUP) showed ~19% and ~36% greater accuracy than conventional BLUP models (ST-BLUP and MT-BLUP) for YW and carcass traits, respectively. Within ssGBLUP models, the accuracy of the genomically estimated breeding value for CW increased (19%) when ST-ssGBLUP was replaced with the MT-ssGBLUP model, as the inclusion of YW in the analysis led to a strong genetic correlation with CW (0.76). For backfat thickness, eye muscle area, and marbling score, ST- and MT-ssGBLUP models yielded similar accuracy. Thus, combining pedigree and genomic data via the ssGBLUP model may be a promising way to ensure acceptable accuracy of predictions, especially among young animals, for ongoing Hanwoo cattle breeding programs. MT-ssGBLUP is highly recommended when phenotypic records are limited for one of th