1403/09/02
محرم آقاپورنهر

محرم آقاپورنهر

مرتبه علمی: دانشیار
ارکید: https://orcid.org/0000-0002-8265-9700
تحصیلات: دکترای تخصصی
اسکاپوس: 24179345700
دانشکده: دانشکده علوم پایه
نشانی: دانشگاه اراک، گروه ریاضی
تلفن:

مشخصات پژوهش

عنوان
هم متناهی بودن مدولهای کوهمولوژی موضعی مشخص برای مدولهای با بعد کوچک
نوع پژوهش
طرح پژوهشی خاتمه‌یافته
کلیدواژه‌ها
کوهمولوژی موضعی ، مدولهای هم متناهی ، مدولهای مینیماکس ، مدولهای از بعد کمتر از یک عدد صحیح
سال 1393
پژوهشگران محرم آقاپورنهر

چکیده

-R یک M و R دو ایدآل از J و I یک حلقهء جابجایی ، یکدار ونوتری باشد و R فرض کنید آنگاه برای هر ،dimM  -تابدار نیست. در این طرح نشان میدهیم اگر ١ I مدول باشد که لزوما -مدولهای R ،i ٠ = ; متناهی مولد است اگر و تنها اگر برای ١ Exti R )R=I;M -مدولهای ( R ،i  ٠ -مدول متناهی R یک M متناهی مولد باشد. به عنوان یک نتیجه ثابت میکنیم که اگر Exti R(R=I;M) یا لسکرین ضعیف باشند FD1 ،Hi I;J )M -مدولهای ( R i < t بطوریکه برای هر t 2 N مولد و ٠ یا FD هم متناهی هستند و برای هر زیر مدول 0 -(I; J) ،Hi I;J )M -مدولهای ( R ،i < t آنگاه برای هر Ext١R(R=I;Ht I;J )M (=N و ( HomR(R=I;Ht I;J )M (=N مدولهای ( -R ،Ht I;J )M از ( N مینیماکس dimM=aM  ، داشته باشیم ١ a 2 ~W )I; J متناهی مولدند. همچنین نشان میدهیم که اگر برای هر ( هم متناهی -(I; J) ،Hi I;J )M ، مدولهای کوهمولوژی موضعی ( i  آنگاه برای هر ٠ dimR=a  یا ١ هستند.