1403/09/01
مریم امیری

مریم امیری

مرتبه علمی: استادیار
ارکید: https://orcid.org/0000-0002-7411-9552
تحصیلات: دکترای تخصصی
اسکاپوس: 57146848900
دانشکده: دانشکده فنی مهندسی
نشانی: دانشگاه اراک
تلفن: 32625522

مشخصات پژوهش

عنوان
تشخیص وب‌سایت‌های فیشینگ بر اساس مدل‌های یادگیری ماشین مبتنی بر محتوا
نوع پژوهش
پایان نامه های تقاضا محور و غیر تقاضا محور
کلیدواژه‌ها
وب‌سایت فیشینگ، الگوریتم اجتماع ذرات دودویی، الگوریتم Apriori، قوانین
سال 1401
پژوهشگران وحید رافع(استاد راهنما)، مریم امیری(استاد مشاور)، فاطمه نعیمی(دانشجو)

چکیده

حملات "فیشینگ" به عنوان یکی از مهمترین تهدیدها در اینترنت و شبکه‌های اجتماعی شناخته می‌شود. در واقع، وبسایت‌های فیشینگ نقطه شروع حملات آنلاین به‌حساب می‌آیند. مهاجمان، صفحات وب مخرب را با تقلید از وبسایت‌های قانونی ایجاد کرده و برای دستیابی به اطلاعات حساس اشخاص و سازمان‌ها، حملات خود را در قالب این وب‌سایت‌های مخرب انجام می‌دهند. بنابراین، شناسایی این وبسایت‌های مورد توجه محققان قرار گرفته‌است . راه‌حل‌های گوناگونی برای آن‌ها پبشنهاد شده‌است. در این پژوهش، با استفاده از دو مجموعه داده UCI و Mendely، یک روش مبتنی بر محتوا برای تشخیص وب‌سایت‌های مخرب ارائه‌می‌شود. در ابتدا، با استفاده از الگوریتم اجتماع ذرات دودویی، ویژگی‌های بهینه انتخاب می‌شوند و در مرحله بعدی بر اساس ویژگی‌های انتخاب شده، قوانین انجمنی با استفاده از الگوریتم اپریوری استخراج می‌شوند. در نهایت یک الگوریتم ترکیبی ارائه می‌شود که با استفاده از قوانین انجمنی بهینه و الگوریتم جنگل تصادفی وب‌سایت‌های فیشینگ و قانونی را با دقت بالا و نرخ خطای پایین طبقه‌بندی می‌کند. مقایسه‌ی نتایج به‌دست‌‌آمده با روش‌های قبلی نشان می‌دهد این روش از عملکرد بهتری برخوردار است.