The recently reported measurement of the W -boson mass by CDF-II collaboration is significantly heavier than that of the Standard Model prediction. We study this anomaly in the scale invariant Two-Higgs- Doublet-Model (SI-2HDM) with a Z 2 symmetry to avoid the flavor-changing-neutral-current (FCNC). In this scenario the Higgs particle is the classically massless scalon in the SI-2HDM gaining its mass by radia- tive corrections, hence being naturally light. Moreover, because of the scale symmetry the model is more predictive respect to the generic 2HDM. We show that the oblique parameters depending on the masses of the charged and CP-even (CP-odd) neutral scalar components of the SI-2HDM denoted respectively by M H ± and M h (M A ), are large enough to accommodate the W -boson mass anomaly in the model. There are as well viable regions in the mass spectrum of the SI-2HDM that evade the experimental bounds from colliders on the charged Higgs and neutral scalars.