2024 : 11 : 23
Hosseinali Ghasemi

Hosseinali Ghasemi

Academic rank: Associate Professor
ORCID: https://orcid.org/0000-0003-4616-7597
Education: PhD.
ScopusId: 12807209700
HIndex:
Faculty: Agriculture and Environment
Address: Arak University
Phone:

Research

Title
Potential benefits of advanced chelate-based trace minerals in improving bone mineralization, antioxidant status, immunity, and gene expression modulation in heat-stressed broilers
Type
JournalPaper
Keywords
organic minerals, broilers, heat stress, immune function
Year
2024
Journal PLOS ONE
DOI
Researchers Taher Mohammadizad ، Kamran Taherpour ، Hosseinali Ghasemi ، Hassan Shirzadi ، Fateme Tavakoli ، mohammad hassan nazaran

Abstract

Organic sources of trace minerals (TM) in broiler diets are more bioavailable and stable than inorganic sources, making them particularly beneficial during challenging periods such as heat stress (HS) conditions. A 42-d study investigated the effects of using advanced chelate technology-based TM (ACTM) or adding varying amounts of ACTM to broiler diets during HS conditions. The study involved 672 male broiler chickens in 7 treatment groups, including a thermoneutral control (TNC) group and six HS treatments. There were 8 replicate pens per treatment and 12 birds per replicate. The six HS treatments included birds exposed to a cyclic HS environment (34°C) for 8 h and were as follows: HSC, which consisted of the same basal diet with the recommended ITM levels; ACTM50 and ACTM100, which replaced the basal diet with 50% and 100% ACTM instead of ITM; ITM+ACTM12.5 and ITM+ACTM25, which involved adding extra ACTM to the ITM basal diet at 12.5% and 25%, respectively; and ITM125, which used 125% of the recommended levels of ITM in the basal diet. Compared with the HSC treatment, the TNC, ACTM100, and ITM+ACTM25 treatments resulted in increased (P < 0.05) body weight; tibia weight; tibia ash, phosphorus, iron, and manganese contents; secondary antibody titers; and serum TAC and SOD values but decreased (P < 0.05) serum MDA concentrations and the expression levels of the hepatic genes IL-1β, IL-6, and INF-γ. The TNC and ACTM100 groups also showed greater (P < 0.05) feed efficiency, tibia length, tibia zinc content, and hepatic SOD1 expression but exhibited reduced (P < 0.05) hepatic NF-kB expression. Significant increases (P < 0.05) in primary anti-NDV titers, serum GPx1 activity, and Nrf2 and GPx1 gene expression levels were also detected in the ACTM100, ITM+ACTM12.5, and ITM+ACTM25 groups. In conclusion, the findings suggest that replacing ITM with ACTM or adding ACTM to ITM diets, especially at a 25% higher dose, can effectively protect broilers from heat stress by promoting growth, reducing inflammation, and increasing the expression of antioxidant proteins.