The presence of copper in aquatic environment is a serious threat for human health and ecosystem conservation. Adsorption is a powerful, operable and economic method for remediation of copper ions from aqueous phase. Carbohydrate biopolymers have emerged as promising, effective and environmental-friendly adsorbents for copper remediation. In part A of this review, different types of carbohydrate biopolymer adsorbents were surveyed focusing on prevalent and novel synthesis and modification methods. In currentwork (part B of the review), isothermal, thermodynamic and kinetic aspects of the copper adsorption by carbohydrate-based adsorbents aswell as the regeneration and reusability of the biopolymer adsorbents are overviewed. Adsorption capacity, time required for equilibrium (adsorption rate), thermal-sensitivity of the adsorption, favorability extent, and sustainability of the adsorbents and adsorption processes are valuable and useful outcomes, resulted from the thermokinetic and reusability investigations. Such considerations are critical for the process design and scale up regarding technical, economical and sustainability of the adsorption process.