Efficient and reliable laser-ablation approaches for large-scale synthesis of SnO2 nanowires are reported. Transmission electron microscopy (TEM) and x-ray diffraction (XRD) were used to confirm the crystal structure of the nanowires. The results show that these nanowires had uniform diameters around 20 nm and lengths in the order of 10 νm. In addition, field effect transistors have been constructed based on individual SnO2 nanowires. Excellent n-type transistor characteristics have been observed for SnO2 nanowire transistors. Detailed analysis revealed threshold voltages ∼ -50V with on/off ratios as high as 103 at room temperature. These nanowire transistors were further demonstrated to work as sensitive UV detectors and gas sensors.