Let $ (A,\| \cdot \|) $ be a real Banach algebra, a complex algebra $ A_\mathbb{C} $ be a complexification of $ A $ and $ \| | \cdot \| | $ be an algebra norm on $ A_\mathbb{C} $ satisfying a simple condition together with the norm $ \| \cdot \| $ on $ A$. We first show that $ A $ is Arens regular if and only if $ A_{\mathbb{C}} $ is Arens regular. Next we prove that $ A^* $ is a real Banach $ A^{**}$-module if and only if $ (A_\mathbb{C})^* $ is a complex Banach $ (A_\mathbb{C})^{**}$-module. Finally, we show that $ A^{**} $ is $ (-1)$-weakly amenable if and only if $ (A_\mathbb{C})^{**} $ is $ (-1)$-weakly amenable. d