2024 : 12 : 14
Abdolreza Moghadassi

Abdolreza Moghadassi

Academic rank: Professor
ORCID: https://orcid.org/0000-0003-0733-4540
Education: PhD.
ScopusId: 25959677500
HIndex:
Faculty: Engineering
Address: Arak University
Phone:

Research

Title
Embedded three spinel ferrite nanoparticles in PES-based nano filtration membranes with enhanced separation properties
Type
JournalPaper
Keywords
Metal Removal, Membrane Surface , Pure Water , Spinel Ferrite , Heavy Metal Removal ◽, Water Flux , Ferrite Nanoparticles , X Ray Diffraction , Filtration Membranes , Pes Membrane
Year
2022
Journal Main Group Metal Chemistry
DOI
Researchers Davoud Ghanbari ، Samaneh Bandehali ، Abdolreza Moghadassi

Abstract

In this study, three types of ferrites nanoparticles including CoFe2O4, NiFe2O4, and ZnFe2O4 were synthesized by microwave-assisted hydrothermal method. The X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) were employed to analyze synthesized nanoparticles and fabricated membranes. The morphology of membrane surface was investigated by surface images. The ability of ferrite nanoparticles was evaluated to the separation of sodium salt and heavy metals such as Cr2+, Pb2+, and Cu2+ from aqueous solutions. The modified membrane showed the enhancement of membrane surface hydrophilicity, porosity, and mean pore size. The results revealed a significant increase in pure water flux: 152.27, 178, and 172.68 L·m−2·h−1 for PES/0.001 wt% of CoFe2O4, PES/0.001 wt% NiFe2O4, and PES/0.001 wt% ZnFe2O4 NPs, respectively. Moreover, Na2SO4 rejection was reached 78% at 0.1 wt% of CoFe2O4 NPs. The highest Cr (II) rejection obtained 72% for PES/0.001 wt% of NiFe2O4 NPs while it was 46% for the neat PES membrane. The Pb(II) rejection reached above 75% at 0.1 wt% of CoFe2O4 NPs. The Cu(II) rejection was obtained 75% at 0.1 wt% of CoFe2O4 NPs. The ferrite NPs revealed the high potential of heavy metal removal in the filtration membrane