مشخصات پژوهش

صفحه نخست /(Almost) Ricci Solitons in ...
عنوان (Almost) Ricci Solitons in Lorentzian–Sasakian Hom-Lie Groups
نوع پژوهش مقاله چاپ‌شده
کلیدواژه‌ها hom-Lie groups; Lorentzian almost contact; hom-Lie algebras; Lorentzian–Sasakian structures; (almost) Ricci solitons
چکیده We study Lorentzian contact and Lorentzian–Sasakian structures in Hom-Lie algebras. We find that the three-dimensional sl(2, R) and Heisenberg Lie algebras provide examples of such structures, respectively. Curvature tensor properties in Lorentzian–Sasakian Hom-Lie algebras are investigated. If v is a contact 1-form, conditions under which the Ricci curvature tensor is v-parallel are given. Ricci solitons for Lorentzian–Sasakian Hom-Lie algebras are also studied. It is shown that a Ricci soliton vector field ζ is conformal whenever the Lorentzian–Sasakian Hom-Lie algebra is Ricci semisymmetric. To illustrate the use of the theory, a two-parameter family of three-dimensional Lorentzian–Sasakian Hom-Lie algebras which are not Lie algebras is given and their Ricci solitons are computed.
پژوهشگران اسماعیل پیغان (نفر اول)، لیلا نورمحمدی فر (نفر دوم)، یون میهای (نفر چهارم)، اکرم علی (نفر سوم)