مشخصات پژوهش

صفحه نخست /Interaction of ...
عنوان Interaction of 3-(1H-tetrazol-5-yl) Coumarin With Bovine Serum Albumin and Calf Thymus DNA: Deciphering the Mode of Binding by In Vitro Studies
نوع پژوهش مقاله چاپ‌شده
کلیدواژه‌ها 3-(1H-tetrazol-5-yl) coumarin, Bovine serum albumin, Calf thymus DNA (Ct-DNA), Binding, Spectroscopy
چکیده Background:Coumarins comprise a large family of heterocyclic compounds with a benzo-a-pyrone moiety. Objectives:This study aimed to analyze the binding affinity of 3-(1H-tetrazol-5-yl) coumarin to bovine serum albumin (BSA) and calf thymus DNA (Ct-DNA) using fluorescence spectroscopy. The quenching of fluorescence was recognized during the interaction between 3-(1H-tetrazol-5-yl) coumarin and BSA, followed by a static mechanism. Methods:The hydrogen bonds, hydrophobic interactions, and Vander Waals forces were regarded as the principal part in the 3-(1H-tetrazol-5-yl) coumarin and BSA complexation process. The fluorescence spectral characteristics demonstrated an enhancement in fluorescence intensity of the 3-(1H-tetrazol-5-yl) coumarin in the presence of ct-DNA solution. Results:The experimental results indicated that the 3-(1H-tetrazol-5-yl) coumarin binds to DNA via interjection, hydrogen bonds, and Vander Waals forces. This work illustrated that BSA fluorescence was quenched by 3-(1H-tetrazol-5-yl) coumarin via a static mechanism and the ct-DNA fluorescence enhancement by 3-(1H-tetrazol-5-yl) coumarin was a static process. The secondary structure of proteins changed upon drug binding. Conclusion:It is deduced that 3-(1H-tetrazol-5-yl) coumarin represents a higher binding affinity to DNA compared to BSA. This finding can be useful in designing more effective new drugs with fewer side effects
پژوهشگران سهیلا خاقانی نژاد (نفر دوم)، جواد سرگلزائی (نفر اول)