مشخصات پژوهش

صفحه نخست /Blow up property for ...
عنوان Blow up property for viscoelastic evolution equations on manifolds with conical degeneration
نوع پژوهش مقاله چاپ‌شده
کلیدواژه‌ها Viscoelastic equation, blow up, Cone Sobolev spaces degenerated differential Operator
چکیده This paper is concerned with the study of the nonlinear viscoelastic evolution equation with strong damping and source terms, described by \[u_{tt} - \Delta_{\mathbb{B}}u + \int_{0}^{t}g(t-\tau)\Delta_{\mathbb{B}}u(\tau)d\tau + f(x)u_{t}|u_{t}|^{m-2} = h(x)|u|^{p-2}u , \hspace{1 cm} x\in int~\mathbb{B}, t > 0,\] where $\mathbb{B}$ is a stretched manifold. First, we prove the solutions of the problem {1.1} in the cone Sobolev space $\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B}),$ which admit a blow up in finite time for $p > m$ and positive initial energy. Then, we construct a lower bound for obtaining blow up time under appropriate assumptions on data.
پژوهشگران مرتضی کوزه گر کالجی (نفر دوم)، محسن علیمحمدی (نفر اول)