عنوان
|
Some Properties of m-th Root Finsler Metrics
|
نوع پژوهش
|
مقاله چاپشده
|
کلیدواژهها
|
Conformal change; m-th root metric; β-change; locally dually flat metric; projec- tively flat metric
|
چکیده
|
We prove that every m-th root metric with isotropic mean Berwald curvature reduces to a weakly Berwald metric. Then we show that an m-th root metric with isotropic mean Landsberg curvature is a weakly Landsberg metric. We find necessary and sufficient condition under which conformal β-change of an m-th root metric is locally dually flat. Finally, we prove that the conformal β-change of locally projectively flat m-th root metrics are locally Minkowskian.
|
پژوهشگران
|
اسماعیل پیغان (نفر سوم)، علی نانکلی (نفر دوم)، اکبر طیبی (نفر اول)
|