1403/09/02
سیف اله سلیمانی

سیف اله سلیمانی

مرتبه علمی: استادیار
ارکید: https://orcid.org/0000-0002-5541-8768
تحصیلات: دکترای تخصصی
اسکاپوس: 36740004600
دانشکده: دانشکده فنی مهندسی
نشانی: دانشگاه اراک- گروه مهندسی کامپیوتر
تلفن:

مشخصات پژوهش

عنوان
بهینه‌سازی نتایج الگوریتم ML-Based GMDH به‌منظور افزایش دقت تشخیص گردوغبار و عمق دید افقی ازطریق الگوریتم TLBO
نوع پژوهش
مقاله چاپ‌شده
کلیدواژه‌ها
گردوغبار تشخیص دید افقی سنجش از دور یادگیری ماشین الگوریتم TLBO شبکه عصبی GMDH
سال 1403
مجله سنجش از دور و GIS ایران
شناسه DOI
پژوهشگران مهدی امیری ، فرزاد امیری ، محمدحسین پوراسد ، سیف اله سلیمانی

چکیده

سابقه و اهداف: کیفیت هوای پاک، به‌منزله یکی از ضروری ترین نیازهای موجودات زنده، براَثر فعالیت های طبیعی و انسانی به‌مخاطره افتاده است. در سال‌های اخیر، طوفان‌های گردوغبار ازلحاظ مکانی و زمانی همواره درحال افزیش بوده و سبب آسیب‌های بی‌شمار درحوزه سلامت اجتماعی، اقتصادی و زیست‌محیطی، برای ساکنان مناطق جنوب و جنوب غرب ایران، شده است. در پژوهش حاضر، به‌منظور بررسی طوفان‌های گردوغبار و تشخیص عمق دید افقی، داده های سنجنده مادیس به‌کار رفته است. مواد و روش‌ها: از مزایای داده های سنجنده مادیس می توان به توان تفکیک طیفی و زمانی بالا اشاره کرد. همچنین داده های ایستگاه‌های هواشناسی با توجه به بازه زمانی مورد مطالعه جمع‌آوری شده است. پس‌از پیش پردازش داده ها و آماده‌سازی مشاهدات میدانی، به‌منظور استخراج ویژگی های مورد نیاز برای انجام‌دادن مدل‎سازی‎ها، ازطریق روش تفاضلی بین باندهای منتخب هر تصویر داده های سنجنده مادیس، به‌همراه ویژگی‌های استخراج‌شده از سنسورهای ایستگاه‌های هواشناسی زمینی استفاده شده است. با بررسی‌های بیشتر و ارزیابی‌های صورت‌گرفته و استفاده از دیدگاه‌های خبرگان هواشناسی، 36 ویژگی تفاضلی از باندهای گوناگون تصاویر مادیس و شش ویژگی از داده‌های ایستگاه‌های هواشناسی زمینی، یعنی درمجموع 42 ویژگی، استخراج شده است. در ادامه، ازطریق تکنیک‌های انتخاب ویژگی، بهترین ویژگی‌ها شناسایی و با به‌کارگیری روشی جدید با نام ML-Based GMDH، که حاصل بهبود شبکه عصبی GMDH ازطریق تغییر توابع جزئی با مدل‌های یادگیری ماشین است، برای تشخیص غلظت گردوغبار و دید افقی استفاده شد. برای دستیابی به دقت مناسب نیز ابرپارامترهای این مدل به‌صورت ابتکاری، با استفاده از الگوریتم بهینه‌سازی TLBO، تنظیم شدند. در ادامه، روش‌های یادگیری ماشین Basic GMDH SVM، MLP، MLR، RF و مدل گروهی آنها نیز، برای مقایسه با رویکرد اصلی، اجرایی شد؛ طبق نتایج، روش ML-Based GMDH تنظیم‌شده با TLBOبا ایجاد بهبود درقیاس با روش های یادگیری ماشین ذکرشده، دقت بهتری را در تشخیص غلظت گردوغبار فراهم کرده است. نتایج و بحث: روش SVM-PSO به‌منزله روش برتر در مرحله انتخاب ویژگی، روش RF به‌منزله روش برتر در میان روش‎های پایه دسته‌بندی و روش‎های Ensemble SVM و Ensemble RF به‌منزله روش‎های برتر در مرحله گروهی و دسته‌بندی انتخاب شدند. همچنین مشاهده شد، با استفاده از رویکرد گروهی، بهبود مطلوبی در تشخیص دسته دید افقی پدید آمد. در رویکرد دوم، روشی با عنوان ML-Based GMDH که حاصل بهبود شبکه عصبی GMDH ازطریق تغییر توابع جزئی با مدل‌های یادگیری ماشین است، استفاده شد که کاربرد آن در تقریب غلظت گردوغبار است. همچنین، برای دستیابی به دقت مناسب، ابرپارامترهای این مدل با الگوریتم بهینه‌سازی TLBO با دقت بسیار بالا تنظیم شدند. نتایج حاصل نشان دادند این روش، با ایجاد بهبود درمقایسه با بهترین روش های انتخابی از رویکرد اول، دقت مناسبی را در تقریب غلظت گردوغبار و عمق دید افقی فراهم کرده است.