The present study sets out to integrate the performance-based seismic design approach with the connection topology optimization method. Performance-based connection topology optimization concept aims to simultaneously optimize the size of members and the type of connections with respect to the framework of performance-based seismic design. This new optimization concept is carried out for unbraced and X-braced steel frames in order to assess its efficiency. The cross-sectional area of components and the type of beam-to-column connections are regarded as design variables. The objective function is formulated in terms of the material costs and the cost of rigid connections. The nonlinear pushover analysis is adopted to acquire the response of the structure at various performance levels. In order to cope with the optimization problem, CBO algorithm is employed. The achieved results demonstrate that incorporating the optimal arrangement of beam-to-column connections into the optimum performance-based design procedure of either unbraced or X-braced steel frame could lead to a design that significantly reduces the overall cost of the structure and offers a predictable and reliable performance for the structure subjected to hazard levels.