Iran, endowed with abundant renewable and non-renewable energy resources, particularly non-renewable resources, faces challenges such as air pollution, climate change and energy security. As a leading exporter and consumer of fossil fuels, it is also attempting to use renewable energy as part of its energy mix toward energy security and sustainability. Due to its favorable geographic characteristics, Iran has diverse and accessible renewable sources, which provide appropriate substitutes to reduce dependence on fossil fuels. Therefore, this study aims to examine trends in energy demand, policies and development of renewable energies and the causal relationship between renewable and non-renewable energies and economic growth using two methodologies. This study first reviews the current state of energy and energy policies and then employs Granger causality analysis to test the relationships between the variables considered. Results showed that renewable energy technologies currently do not have a significant and adequate role in the energy supply of Iran. To encourage the use of renewable energy, especially in electricity production, fuel diversification policies and development program goals were introduced in the late 2000s and early 2010s. Diversifying energy resources is a key pillar of Iran’s new plan. In addition to solar and hydropower, biomass from the municipal waste from large cities and other agricultural products, including fruits, can be used to generate energy and renewable sources. While present policies indicate the incorporation of sustainable energy sources, further efforts are needed to offset the use of fossil fuels. Moreover, the study predicts that with the production capacity of agricultural products in 2018, approximately 4.8 billion liters of bioethanol can be obtained from crop residues and about 526 thousand tons of biodiesel from oilseeds annually. Granger’s causality analysis also shows that there is a unidirectional causal relationship be