This paper presents electrochemical impedance simulation of a solid oxide fuel cell (SOFC) anode in order to investigate the effect of mass transport processes on the impedance spectra. The current model takes in to account the gas-phase transport processes both in the gas channel and within the porous electrode and couples the gas transport processes with the electrochemical kinetics. The impedance simulation is carried out in time domain, and the correlation between the anode harmonic responses to the sinusoidal excitation and the impedance spectra is analyzed. In order to solve the system of non-linear equations, an in-house code based on the finite difference method is developed and utilized. Results show a depressed semicircle in the Nyquist plot, which originates from gas transport processes in the gas channel, in addition to a Warburg diffusion impedance originates from gas transport in the thick porous anode. The influence of parameters such as electrode thickness, inlet gas composition, and temperature is also investigated and the results are discussed. The simulation results are in good agreement with published data.