2024 : 11 : 22
Mohammadreza Vesali Naseh

Mohammadreza Vesali Naseh

Academic rank: Assistant Professor
ORCID: https://orcid.org/0000-0001-7556-3850
Education: PhD.
ScopusId: 53980571900
HIndex:
Faculty: Engineering
Address: Arak University
Phone:

Research

Title
A Framework Development for Predicting the Longitudinal Dispersion Coefficient in Natural Streams Using an Artificial Neural Network
Type
JournalPaper
Keywords
longitudinal dispersion coefficient, artificial neural network, training functions, natural streams
Year
2010
Journal Environmental Progress & Sustainable Energy
DOI
Researchers Rohollah Nouri ، Abdulreza Karbassi ، Hadi Mehdizadeh ، Mohammadreza Vesali Naseh ، Ali Sabahi

Abstract

The main objective of the present investigation is to predict longitudinal dispersion coefficient (Kx) in natural streams using artificial neural network (ANN) technique based on most famous training functions such as Trainlm, Trainrp, Trainscg, Trainoss, and so on. To achieve the goal, hydraulic and geometric data (shear velocity, channel width, local flow depth, and mean longitudinal velocity) that are easily obtained in natural streams are used. First, we have tried to review the most well-known of published work in the field due to find out deficiencies of them. Second, new approach of ANN model based on the famous training functions is applied for predicting Kx in natural streams and then the best architectures for each training functions is selected by trial and error. Finally, Levenberg-Marquardt training function (Trainlm) is selected as the best choice for training the network parameters. Determination coefficient (R2) and mean absolute error for ANN (Trainrp) model were equal to 0.94 and 33 in the training and 0.95 and 30 in the testing steps, respectively. It is hoped that the presented methodology in the research, can be useful in river water quality management studies