2024 : 12 : 27
Mohsen Rahmani

Mohsen Rahmani

Academic rank: Associate Professor
ORCID: https://orcid.org/0000-0001-6890-192X
Education: PhD.
ScopusId: 37061814300
HIndex:
Faculty: Engineering
Address: Arak University
Phone:

Research

Title
HMDE‐FS: A homogeneous distributed ensemble feature selection framework based on resampling with/without replacement
Type
JournalPaper
Keywords
bootstrap resampling, cross validation resampling, distributed computing, feature selection, homogeneous ensemble learning
Year
2023
Journal Concurrency and Computation: Practice and Experience
DOI
Researchers Vahid Nosrati ، Mohsen Rahmani

Abstract

Applying ensemble feature selection (EFS) models in various problems has not been actively discussed, and there has been a lack of effort to make it applicable in the situations such as distributed environments. Due to restrictions of centralized algorithms such as their poor scalability in the high dimension data and also distributed nature of some data, using the traditional centralized computing for dealing with such problems may be inevitable. This paper aims to develop a homogenous distributed ensemble feature selection (HMDE-FS) framework through a distributed resampling approach rather than a centralized one. The homogenous ensembles mainly operate along with a resampling process, so applying various methods to resampling can affect the performance of the model. Among various strategies, those with and without replacement are two of the main technique families, hence we investigated the efficiency of two well-known with/without replacement techniques: bootstrapping (BS) and cross-validation (CV) inspired method that we named crisscross (CC). The proposed HMDE-FS approaches are tested on eight datasets, and the heavy experimental results illustrate that these methods considerably reduce runtime, while classification accuracy maintains its competitiveness.