In this paper, a mixed modeling approach for orthotropic laminated plates is developed. By adopting Hellinger-Reissner functional and dimension reduction method along the thickness, the governing equations were derived. By considering other theories i.e. classical plate theory, first order shear deformation theory and elasticity theory, the advantages of the current work are illustrated with some numerical results. Excellent agreements were observed by comparing the obtained results with three-dimensional elasticity theory for laminated thick plates. In the presented method, shear correction factor was not required for considering shear strain components. Furthermore, finite element simulation was implemented in Abaqus software by using two-dimensional shell elements and compared with obtained results. It is seen that although finite element model predicts good results for displacement field but it cannot provide any suitable results in thickness direction.