Due to the persistence of polycyclic aromatic hydrocarbons (PAHs) in soil and sediments, and their toxic, mutagenic, and carcinogenic effects, the remediation of PAH-contaminated sites is an important role for environment pollution. In this study, the chemical oxidative remediation of anthracene-contaminated soils was investigated by magnetite nanoparticles (Fe3O4) catalyzed Fenton-like oxidation in the presence of hydrogen peroxide 30% (H2O2) and urea-hydrogen peroxide (UHP) at neutral pH. Urea-hydrogen peroxide (UHP), as a safer oxidizing agent, is used for the first time in the Fenton process. The magnetite nanoparticles improved the production of hydroxyl radicals, and the removal of polycyclic aromatic hydrocarbons (anthracene as a model compound) from the soil samples. The structure of Fe3O4 nanoparticles was characterized by Fouriertransform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The removal efficiency of anthracene at an initial concentration 2500 (mg kg-1) was 95% for 2.5 mmol by using hydrogen peroxide and 93% for 0.1 mmol of UHP at the optimum oxidation condition. The anthracene reaction was analyzed by ultraviolet-visible spectroscopy (UV-Vis). The UHP safety and efficiency, neutral pH condition, the limited iron leaching and its easy magnetic separation makes magnetite nanoparticles-UHP a promising catalytic system in remediation of polycyclic aromatic hydrocarbons in contaminated soils.