The fluid approach is employed to investigate theoretically the effect of strong electrostatic interaction on the dust acoustic (DA) shock waves near to the liquid-crystal phase transition in strongly coupled dusty plasma. The strong electrostatic interaction is modeled by effective electrostatic temperature which is considered as a dynamical variable. It is shown that the nonlinear evolution of dust acoustic shock waves in the present model is governed by a Burger equation, the coefficients in which are modified by strong coupling effect. Then, it is shown that how the perturbation of the effective electrostatic temperature modifies the basic properties of the DA shock waves.