2025 : 5 : 5
Mansour Ghorbanpour

Mansour Ghorbanpour

Academic rank: Professor
ORCID: https://orcid.org/0000-0002-4790-2701
Education: PhD.
ScopusId: 55220558500
HIndex:
Faculty: Agriculture and Environment
Address: Arak University
Phone:

Research

Title
Green synthesized iron oxide nanoparticles as a potential regulator of callus growth, plant physiology, antioxidative and microbial contamination in Oryza sativa L.
Type
JournalPaper
Keywords
FeO-NPs, IRRI-6, Kissan basmati, Rapid callus induction, Callus regeneration, Iron substitution, Physiochemical attributes
Year
2024
Journal BMC Plant Biology
DOI
Researchers Jawad Ullah ، Afia Gul ، Ilham Khan ، Junaid Shehzad ، Rehana Kausar ، Muhammad Shahzad Ahmed ، Sana Batool ، Murtaza Hasan ، Mansour Ghorbanpour ، Ghazala Mustafa

Abstract

In tissue culture, efficient nutrient availability and effective control of callus contamination are crucial for successful plantlet regeneration. This study was aimed to enhance callogenesis, callus regeneration, control callus contamination, and substitute iron (Fe) source with FeO-NPs in Murashige and Skoog (MS) media. Nanogreen iron oxide (FeO-NPs) were synthesized and well characterized with sizes ranging from 2 to 7.5 nm. FeO-NPs as a supplement in MS media at 15 ppm, significantly controlled callus contamination by (80%). Results indicated that FeCl3-based FeO-NPs induced fast callus induction (72%) and regeneration (43%), in contrast FeSO4-based FeO-NPs resulted in increased callus weight (516%), diameter (300%), number of shoots (200%), and roots (114%). Modified media with FeO-NPs as the Fe source induced fast callogenesis and regeneration compared to normal MS media. FeO-NPs, when applied foliar spray, increased Plant fresh biomass by 133% and spike weight by 350%. Plant height increased by 54% and 33%, the number of spikes by 50% and 265%, and Chlorophyll content by 51% and 34% in IRRI-6 and Kissan Basmati, respectively. Additionally, APX (Ascorbate peroxidase), SOD (Superoxide dismutase), POD (peroxidase), and CAT (catalase) increased in IRRI-6 by 27%, 29%, 283%, 62%, while in Kissan Basmati, APX increased by 70%, SOD decreased by 28%, and POD and CAT increased by 89% and 98%, respectively. Finally, FeO-NPs effectively substituted Fe source in MS media, shorten the plant life cycle, and increase chlorophyll content as well as APX, SOD, POD, and CAT activities. This protocol is applicable for tissue culture in other cereal crops as well.