Phytoremediation is a strategy to employ plants to recover high quantities of metals in the soil into the harvestable parts such as shoots and roots. High levels of Cd and lead (Pb) in the soil cause several stress symptoms in plants including a decrease in growth, reduced root growth, and carbohydrate metabolism. In this study, Saravan and HGS-867 as local landrace and Indian guar variety were selected to investigate the effect of the application of Pb (0, 40, 150, and 200 mg/l) and the cadmium (0, 25, 50, and 100 mg/l) on phonological, yield parameters, and phytoremediation assessment. The results showed that Pb translocation factor (TF) was significant in Pb×Cd and Pb×Cd×G (genotype) at p<0.01 and in Pb×G at p<0.05. Pb bioconcentration factor (BCF) was significant (p<0.01) in all treatments except Cd and Cd×G treatments. Mean comparison of the data showed that the number of flowers, leaves, and clusters in plant decreased significantly with increasing Pb content. With increasing Cd concentration, the number of branches, height, the number of seeds, clusters, and leaves for each plant decreased significantly at the level of 1%. The maximum TF was observed in Pb at 40 mg/l in the HG-867 variety. Moreover, the Saravan landrace exposed to Cd (100 mg/l) showed the highest value of BCF (Cd). The gum percentage significantly decreased with increasing concentrations of Pb and Cd. Pearson’s correlation analysis indicated that plant height, number of pods/plant, root length, biomass, and pod length had a positive correlation with seed yield and a negative correlation with TF (Pb) and BCF (Pb). The results suggest that according to TF, BCF, and BAC, C. tetragonoloba L. can be effectively used as a good accumulator of toxic metals in contaminated soils.