2024 : 11 : 23
Mahdi Khodaei Motlagh

Mahdi Khodaei Motlagh

Academic rank: Professor
ORCID: https://orcid.org/0000-0002-1281-7152
Education: PhD.
ScopusId: 41861677000
HIndex:
Faculty: Agriculture and Environment
Address:
Phone:

Research

Title
Zinc oxide nanoparticles preserve the quality and fertility potential of rooster sperm during the cryopreservation process
Type
JournalPaper
Keywords
cryopreservation, fertility, Lake extender, rooster, spermatozoa, ZnONP
Year
2024
Journal Reproduction in Domestic Animals
DOI
Researchers Mohamma Jvad Karimi Sabet ، Mahdi Khodaei Motlagh ، Reza Masoudi ، Mohsen Sharafi

Abstract

Sperm cryopreservation is one of the main methods for preserving rooster sperm for artificial insemination (AI) in commercial flocks. Yet, rooster sperm is extremely susceptible to reactive oxygen species (ROS) produced during the freezing process. Oxidative stress could be prevented by using nanoparticles containing antioxidants. The present study was conducted to investigate the effect of zinc oxide nanoparticles (ZnONP) in rooster semen freezing extender on quality parameters and fertility potential. For this aim, semen samples were collected and diluted in Lake extenders as follows: control: Lake without ZnONP, ZnO100: Lake with 100-μg zinc oxide (ZnO), ZnONP50: Lake with 50-μg ZnONP, ZnONP100: Lake with 100-μg ZnONP and ZnONP200: Lake with 200-μg ZnONP. After freezing and thawing, sperm motility, viability, membrane integrity, morphology, mitochondrial activity, acrosome integrity, DNA fragmentation, lipid peroxidation and ROS, as well as fertility and hatchability were assessed. According to the current results, higher rates of motility, membrane integrity, mitochondrial activity, acrosome integrity and live cells were detected in the ZnO100, ZnONP50 and ZnONP100 groups compared to other groups (p ≤ .05). Yet, the percentage of dead cells, DNA fragmentation, lipid peroxidation and ROS levels were lower in the mentioned groups (p ≤ .05). Furthermore, a higher percentage of fertility was observed in the ZnO100 and ZnONP100 groups than in the control group (p ≤ .05). In conclusion, the use of 100-μg ZnO and 50- to 100-μg ZnONP represents a valuable and safe additive material that could be used to improve the quality and fertility potential of rooster sperm under cryopreservation conditions.