2024 : 11 : 22
Hamid Reza Roosta

Hamid Reza Roosta

Academic rank: Professor
ORCID: https://orcid.org/0000-0001-6110-8144
Education: PhD.
ScopusId: 23036696800
HIndex:
Faculty: Agriculture and Environment
Address: Arak University
Phone:

Research

Title
How glycine betaine induces tolerance of cucumber plants to salinity stress?
Type
JournalPaper
Keywords
Cucumis sativus; Kautsky curve; OJIP transient; osmolyte; photosystem; pigment
Year
2019
Journal PHOTOSYNTHETICA
DOI
Researchers Ahmad Estaji ، Mohamad Hazem Kalaji ، Hamidreza Karimi ، Hamid Reza Roosta ، Seyed Moein Moosavi Nezhad

Abstract

The mechanism of osmoprotectant action on photosynthesis process is still not well known, especially under salt stress. The objective of this study was to evaluate and explain the effect of glycine betaine (GB) on photosynthetic efficiency and other physiological parameters of cucumber plants grown under salinity stress. Our results indicated that salinity decreased chlorophyll and carotenoids content, Ca2+ and K+ concentrations, and quantum yield parameters, such as probability that a trapped exciton moves an electron in to the electron transport chain beyond QA, quantum yield of electron transport from QA to QB in PSII, quantum yield of reduction of end electron acceptors in PSI, performance index for the photochemical activity, total performance index for the photochemical activity, trapping per reaction centers, and other parameters related to primary photochemical reactions of PSII. However, the exogenously applied GB increased most of tested parameters including the total soluble carbohydrate, proline and GB content, and Ca2+ and K+ concentrations, under salt stress. We suggest that GB can play an essential role as regulator to improve photosynthetic efficiency and thus yield of cucumber plants under salt stress conditions. At the level of photosynthesis process, the application of exogenous GB indirectly enhanced the performance of the photosynthetic machinery of cucumber plant due to the reduction of the dissipated light energy, as heat, and the increase of primary reactions of photosynthesis efficiency.