Dynamic adsorption of acetaldehyde from water on strong anionic resin of AMBERLITE IRA 402-OH, modified with bisulfite treatment, was investigated. Effects of three fundamental parameters including initial feed concentration, feed flowrate and active length of the bed on the adsorption were studied with the help of the breakthrough curve analysis. Morphology and functionality of the resin surface in different steps of the process were investigated using scanning electron microscopy and Furrier transform infrared spectroscopy, respectively. SEM analysis disclosed morphological changes in the resin surface as a result of the aldehyde adsorption. Some differences in the characteristic patterns of CeH bonds as a result of aldehyde adsorption were also approved by the FTIR analysis. Aldehyde removal and bed adsorption capacity were calculated at different operating conditions. The experimental breakthrough data was satisfactorily correlated with the Thomas model. The maximum bed adsorption capacity was obtained as 11.14 (mg/g), in good agreement with the experimentallymeasured bed capacity, 12.61(mg/g). Regeneration experiments demonstrated negligible capacity loss (less than 4%) of the resin bed after six successive adsorption/regeneration cycles. Results indicated that AMBERLITE IRA 402-OH with the maximum acetaldehyde removal of 86% is a potential adsorbent for the recovery of low aldehyde-contaminated spent process water.