In this work, silver–zeolite–poly (acrylamide-co-acrylic acid) semi-interpenetrating hydrogels with different percentage of silver (Ag) were synthesized by two methods. In the first method, silver nanopowder particle was added to (acrylamide-co-acrylic acid)/Y zeolite hydrogels by radical graft copolymerization. In the second method, Ag nanolayer was deposited on poly (acrylamide-co-acrylic acid)/Y zeolite by magnetron sputtering method. To determine the structure of Ag– zeolite–poly (acrylamide-co-acrylic acid) nanocomposite, the X-ray diffraction, Fourier transfer infrared, scanning electron microscopy and thermogravimetric analysis were carried out. Then, their ability in removing wastewater fertilizer, using chemical oxygen demand was studied. Also, the effect of some factors such as temperature, pH, content of adsorbent, and the percentage of silver were investigated. The in vitro antibacterial activity of these composites was evaluated against Bacillus subtilis (as Gram-positive bacteria), Pseudomonas aeruginosa (as Gramnegative bacteria), and compared with standard drugs. The results show that Ag– zeolite–poly (acrylamide-co-acrylic acid) nanocomposite which nanosilver incorporated to it by radical graft copolymerization has more inhibition on bacterial growth.