In present work, Zn complexed on hybrid manganese doped cobalt ferrite nanoparticles covered by silica were synthesized. These MNPs were characterized using different techniques including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Field emission‐scanning electron micro-scope (FE-SEM), Energy‐dispersive X‐ray spectroscopy (EDS), Vibration sample magnetometer (VSM), Inductively coupled plasma atomic emission spectroscopy (ICP), Zeta potential and Thermogravimetric analysis (TGA). FE-SEM Images showed uniform spherical shape with rough surfaces and an aggregation in structure MNPs. A decrease in Ms is visible in VSM analysis due to the increase in particle diameter as a result of loading the organic coating on the surface of the magnetic nanoparticles. According to TGA analysis, the synthesized MNPs have good stability up to 125 °C. The ICP analysis indicates the presence of 0.13 mmol/g zinc on the surface loaded MNPs. The catalytic activity of MNPs was studied in the synthesis of 2-amino-4H-pyran and N- arylquinoline derivatives. This method provides excellent yield of products with short reaction time, simple purification and easy separation of the catalyst. Furthermore, the reusability of the catalyst during five periods was not associated with a significant decrease in its activity.