2024 : 11 : 3
Akbar Mobinikhaledi

Akbar Mobinikhaledi

Academic rank: Professor
ORCID: https://orcid.org/0000-0002-9732-7282
Education: PhD.
ScopusId: 6701730547
HIndex:
Faculty: Science
Address: Arak University
Phone:

Research

Title
Ionic Liquid-Coated Nanoparticles (CaO@SiO2@BAIL): A Bi-Functional and Environmentally Benign Catalyst for Green Synthesis of Pyridine, Pyrimidine, and Pyrazoline Derivatives
Type
JournalPaper
Keywords
Hybrid material; nanoparticles; green chemistry; pyridines; pyrimidines; pyrazolines
Year
2021
Journal Polycyclic Aromatic Compounds
DOI
Researchers Fatemeh Sameri ، Mohammad Ali Bodaghifard ، Akbar Mobinikhaledi

Abstract

A novel ionic liquid-coated nanomaterials (CaO@SiO2@BAIL) was successfully synthesized by anchoring the 1-(3-(trimethoxysilyl)propyl)-1,3,5,7-tetraazaadamantan- 1-ium chlorozincate (II) bi-functional ionic liquid (BAIL) onto the surface of silica-coated CaO nanoparticles. The structure of catalyst was characterized using various analytical techniques such as Fouriertransform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), WDS map scan, thermogravimetric (TGA), and inductively-coupled plasma-mass spectrometry (ICP-MS). The performances of prepared hybrid nanomaterial (CaO@SiO2@BAIL) as a catalyst were evaluated for the efficient synthesis of the pharmaceutically valuable heterocyclic compounds. A variety of pyridine, pyrimidine, and pyrazoline derivatives were synthesized in the presence of CaO@SiO2@BAIL within green conditions. The presented method has several advantages such as high yields, low reaction times, and easy preparation of the catalyst. The bi-functional heterogeneous nanocatalyst can be reused at least six times without considerable loss of its catalytic activity.