2024 : 12 : 6
Abolghasem Daeichian

Abolghasem Daeichian

Academic rank: Associate Professor
ORCID: https://orcid.org/0000-0002-6318-579X
Education: PhD.
ScopusId: 55916844500
HIndex:
Faculty: Engineering
Address: Arak University
Phone: 08632625436

Research

Title
Online Characteristics Estimation of a Fuel Cell Stack through Covariance Intersection Data Fusion
Type
JournalPaper
Keywords
Data fusion, Energy management strategy, Modeling, Online identification, Proton exchange membrane fuel cell
Year
2021
Journal Applied Energy
DOI
Researchers Abolghasem Daeichian ، Razieh Ghaderi ، MOHSEN KANDI ، Mehdi Soleymani ، João P. Trovão ، Loïc Boulon

Abstract

Employing semi-empirical models to estimate some characteristics of a fuel cell (FC) stack, such as power and polarization curves, is demanded for efficient design of a power allocation strategy in a FC hybrid electric vehicle. However, the multivariate nature of a FC system has made the design of an accurate model challenging. Since each semi-empirical model has its own pros and cons, this paper puts forward a data fusion approach for online characteristics estimation of a FC stack utilizing four well-known models, namely Mann, Squadrito, Amphlett, and Srinivasan. Despite the other similar techniques, the suggested one utilizes the strengths of each mentioned FC model while avoiding their drawbacks. Kalman filter is employed to identify the parameters of the models online to embrace the uncertainties caused by the alteration of operating conditions and degradation level. Considering the parameters, the output voltage given by each model as well as their covariance are computed. Then, a covariance intersection algorithm is proposed to fuse the estimated output voltages. The fusion of the models’ outputs leads to the estimation of fused characteristics curves. To underline the effectiveness of the proposed method, it is applied to four different experimental datasets extracted from three 500-W Horizon FCs. The obtained results demonstrate the superior performance of the suggested estimator in the sense of mean square error. On average, the mean square error of the data fusion method is 39.64% and 36.59% lower than other studied methods while estimating the polarization curve and power curve, respectively.