2024 : 12 : 26
Mohammad Solimannejad

Mohammad Solimannejad

Academic rank: Professor
ORCID: https://orcid.org/0000-0003-0617-8689
Education: PhD.
ScopusId: 6701740031
HIndex:
Faculty: Science
Address: Arak University
Phone:

Research

Title
First-principles study of superior hydrogen storage performance of Li-decorated Be2N6 monolayer
Type
JournalPaper
Keywords
Be2N6 monolayer Hydrogen storage First-principles study
Year
2020
Journal International Journal of Hydrogen Energy
DOI
Researchers rezvan rahimi ، Mohammad Solimannejad

Abstract

The potential application of pristine Be2N6 monolayer and Li-decorated Be2N6 monolayer for hydrogen storage is researched by using periodic DFT calculations. Based on the obtained results, the Be2N6 monolayer gets adsorb up to seven H2 molecules with an average binding energy of 0.099 eV/H2 which is close to the threshold energy of 0.1 eV required for practical applications. Decoration of the Be2N6 monolayer with lithium atom significantly improves the hydrogen storage ability of the desired monolayer compared to that of the pristine Be2N6 monolayer. This can be attributed to the polarization of H2 molecules induced by the charge transfer from Li atoms to the Be2N6 monolayer. Decoration of Be2N6 monolayer with two lithium atoms gives a promising medium that can hold up to eight H2 molecules with average adsorption energy of 0.198 eV/H2 and hydrogen uptake capacities of 12.12 wt%. The obtained hydrogen uptake capacity of 2Li/Be2N6 monolayer is much higher than the target set by the U.S. Department of Energy (5.5 wt% by 2020). Based on the van’t Hoff equation, it is inferred that hydrogen desorption can occur at TD ¼ 254 K for 2Li/ Be2N6 (8H2) system which is close to ambient conditions. This is a remarkable result indicating important practical applications of 2Li/Be2N6 medium for hydrogen storage purposes