2024 : 4 : 17
Mohammad Javad Khoshgoftar

Mohammad Javad Khoshgoftar

Academic rank: Assistant Professor
ORCID: https://orcid.org/0000-0002-7942-6877
Education: PhD.
ScopusId: 35119188800
Faculty: Engineering
Address: Arak University
Phone: 08632625005

Research

Title
Magnetorheological elastomer composites: Modeling and dynamic finite element analysis
Type
JournalPaper
Keywords
Magnetorheological elastomers (MREs)Fiber-reinforced composites (FRCs)Finite element method (FEM)First-order shear deformation theory (FSDT)
Year
2020
Journal Composite Structures
DOI
Researchers ebrahim yarali ، mohammad ali farajzadeh ، reza noroozi ، Mohammad Javad Khoshgoftar ، mohammad javad mirzaali

Abstract

Magnetorheological elastomers (MREs) are polymers reinforced by ferromagnetic particles that show magnetic dependent behavior. Mixing MREs with reinforcing fibers can create a new class of material so-called “MRE composites, MRECs” with additional functionalities and properties. Here, using a Generalized Maxwell model, we proposed a new magnetic-dependent rheological model by considering the hysteresis phenomenon for MREs to predict the dynamic damping responses of MREC plates reinforced by fibers in the frequency domain. We also investigated the influence of magnetic flux intensity, the volume fraction of the fiber, the orientation angle of the fibers, the number of layers, as well as the fiber-to-matrix stiffness ratio on the natural frequency, loss factor, and mode shapes of MRECs plates. Our results suggest that homogenously increasing the elastic properties of the MRECs through the spatial distribution of fibers and changing the fiber-to-matrix stiffness ratio can effectively tailor the dynamic properties of MRECs. Tailoring these properties can provide additional freedom for the fabrication of 4D-printed MRE-based composites.