2024 : 5 : 12
Mahmoud Karimi

Mahmoud Karimi

Academic rank: Assistant Professor
ORCID: https://orcid.org/0000-0003-2097-7858
Education: PhD.
ScopusId: 55892910300
Faculty: Agriculture and Environment
Address: Arak University
Phone:

Research

Title
Applications of Ultrasound in Biofuels
Type
Book
Keywords
Ultrasound radiation, Biomass, Ethanol, Acoustic cavitation, Sonochemistry, Lignocellulosic biomass, Starch
Year
2016
Researchers Mahmoud Karimi

Abstract

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels" to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly made by fermenting any biomass high in carbohydrates through a process similar to beer brewing. Today, ethanol is made from starches and sugars, but scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Ethanol is mostly used as blending agent with gasoline to increase octane and cut down carbon monoxide and other smog-causing emissions. Some vehicles, called Flexible Fuel Vehicles, are designed to run on E85, an alternative fuel with much higher ethanol content than regular gasoline. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. Research into the production of liquid transportation fuels from microscopic algae, or microalgae, is reemerging in the world. These microorganisms use the sun's energy to combine carbon dioxide with water to create biomass more efficiently and rapidly than terrestrial plants. Oil-rich microalgae strains are capable of producing the feedstock for a number of transportation fuels—biodiesel, "green" diesel and gasoline, and jet fuel—while mitigating the effects of carbon dioxide released from sources such as power plants. The efficiency of physical, chemical or biological process depends on the method of introduction of energy into the system to bring about the required transformation. Numerous new techniques have been invented in recent years that offer efficie