2024 : 4 : 15
Hamidreza Sanaeepur

Hamidreza Sanaeepur

Academic rank: Associate Professor
ORCID: https://orcid.org/0000-0003-3255-9696
Education: PhD.
ScopusId: 36129742900
Faculty: Engineering
Address: Arak University
Phone: 086-32625410


3D Simulation of the Purification of Carbon Monoxide with CuCl(7.0)/AC by the Pressure Swing Adsorption Process
Numerical Simulation, Computational Fluid Dynamics Modeling, Carbon Monoxide Purification, Pressure Swing Adsorption, CuCl/AC Adsorbent
Journal Iranian Journal of Chemical Engineering (IJChE)
Researchers Pouria sharafi ، Ehsan Salehi ، Hamidreza Sanaeepur ، Abtin Ebadi Amooghin


In this work, the separation of carbon monoxide (CO) from a synthesized gas (syngas) mixture was modeled. It was considered a copper-based adsorbent consisting of cuprous chloride (CuCl) on an activated carbon (AC) support (CuCl/AC) in a pressure swing adsorption (PSA) process. First, the adsorption of syngas components on the CuCl/AC adsorbent at 303.15 K was simulated to determine the required data. Next, the PSA process of separating CO from syngas using the CuCl/AC absorbent at ambient temperature and pressure of 1000 kPa was evaluated by the computational fluid dynamics simulation. The simulation results showed that with an adsorption bed of 2 m in height and 1 m in diameter, CO with appropriate purity (~ 99.5 %) was separated from syngas by CuCl/AC. In addition, reducing the inlet feed pressure, or in other words, its velocity or flow can increase the efficiency of the operation (e.g., with a shorter bed height of 0.5 m, a CO purity of more than 99.8 % can be achieved at 700 kPa, but with a significant increase in the operating cost).