2024 : 4 : 17
Farzad Bamdad

Farzad Bamdad

Academic rank: Associate Professor
ORCID: https://orcid.org/0000-0002-3900-0783
Education: PhD.
ScopusId: 23487653700
Faculty: Science
Address: Arak University


Effect of gold nanoparticle as a novel nanocatalyst on luminol–hydrazine chemiluminescence system and its analytical application
Unsupported gold nanoparticles، Catalysis, Chemiluminescence
Journal Analytica Chimica Acta
Researchers Afsaneh Safavi ، Ghodratollah Absalan ، Farzad Bamdad


In this work the catalytic role of unsupported gold nanoparticles on the luminol–hydrazine reaction is investigated. Gold nanoparticles catalyze the reaction of hydrazine and dissolved oxygen to generate hydrogen peroxide and also catalyze the oxidation of luminol by the produced hydrogen peroxide. The result is an intense chemiluminescence (CL) due to the excited 3-aminophthalate anion. In the absence of gold nanoparticles no detectable CL was observed by the reaction of luminol and hydrazine unless an external oxidant is present in the system. The size effect of gold nanoparticles on the CL intensity was investigated. The most intensive CL signals were obtained with 15-nm gold nanoparticles. UV–vis spectra and transmission electron microscopy studies were used to investigate the CL mechanism. The luminol and hydroxide ion concentration, gold nanoparticles size and flow rate were optimized. The proposed method was successfully applied to the determination of hydrazine in boiler feed water samples. Between 0.1 and 30M of hydrazine could be determined with a detection limit of 30 nM.